Uncovering new targets for the fight against MRSA infections: Targeting Polyamine Detoxification.

Peri Moulding and Omar El-Halfawy

Department of Chemistry and Biochemistry University of Regina

Introduction

- Antibiotic-resistant bacterial infections are increasing in occurrence, in 2018 alone, 14,000 Canadians died due to antimicrobial resistant pathogens.
- MRSA is the leading cause of hospital and community-acquired infections worldwide.
- Bacteria are continually developing new resistance mechanisms towards last-resort antibiotics increasing the need for the development of new treatment strategies.
- Polyamines are small polycationic molecules produced by all forms of life, and their concentrations increase at infection sites.
- The most prevalent community-acquired MRSA strain USA300 shows resistance to exogenous polyamines, while these compounds are toxic to other strains.
- This unique resistance, stemming from polyamine detoxification systems that are not fully known, is thought to enhance the virulence of this strain, thus contributing to its prevalence.

Objectives

- We hypothesized that disrupting USA300's unique resistance to polyamines will increase susceptibility to these compounds, prevent polyamine-induced antibiotic resistance, and improve antibiotic treatment outcomes.
- Our work aims to identify previously unknown polyamine detoxification systems in MRSA to serve as novel antibiotic targets and discover inhibitors of these systems.

Methods

- We determined the MICs of polyamines against USA300 using the broth microdilution method.
- We performed a genome-wide screen to identify targets involved in polyamine resistance.
- We tested mutants of the identified targets in a *Calleria mellonella* infection model to evaluate their *in vivo* relevance.
- We studied the interaction between polyamines and antibiotics against USA300 using checkerboard assays.

• A genome-wide screen identified new factors involved in polyamine resistance mechanisms. Those of primary interest include *speG* and *ocd*.

Effects of Spermidine on the Growth of Mutant and Wild-Type *S. aureus* Strains

 Mutants with disruptions in speG and ocd are more susceptible to spermidine and spermine than the wild-type strain.

- 0 0.031 0.063 0.125 0.25 0.5 1 2 Vancomycin (µg/mL)
- Polyamines increased resistance against clinically relevant antibiotics in the wild-type strain, but not in ocd and speG mutants.

Galleria Survival Following Injection with S. aureus

 ocd and speG mutants are slightly less virulent in the Galleria infection model compared to the wild-type strain.

Conclusions/Future Directions

- Polyamines increase resistance and provide a protective effect against certain antibiotics used to treat MRSA.
- We have Identified new mechanisms of polyamine resistance in MRSA that can serve as new targets for antibiotic therapy and are currently screening for this.

• Workflow for the discovery of an inhibitor of polyamine detoxifying systems in *S. aureus*. Image created with BioRender.com

Significance

• This study reveals novel drug targets that will provide new potential therapeutic solutions to multidrug-resistant *S. aureus* infections.

Joshi, G.S., Spontak, J.S., Klapper, D.C., & Richardson, A.R. (2011). Arginine catabolic mobile element encoded speG abrogates the unique hypersensitivity of Staphylococcus aureus to exogenous polyamines. *Molecular Microbiology*, 82(1), 9-20. doi:10.111/J65-5988.2011.07809.x

Nebraska Transposon Mutant Library. Department of Pathology and Microbiology Center for Staphylococcal Research (CSR) University of Nebraska Medical Center. https://appl.unmc.edu/fgx/