

INTRODUCTION

Sleep Deprivation definition: Sleeping < 7 hours each night

In adults:

- Factors known to influence sleep deprivation:
 - Sociodemographic (sex/gender, age, marital status, ethnicity, income)
 - Lifestyle/behavioral (physical activity, smoking, alcohol intake, body mass index, stress)

In adults with CLD:

- Sleep adversely affected in those with Chronic Obstructive Pulmonary Disease/Asthma (collectively: chronic lung disease (CLD)).
- Prevalence as high as 78%¹ vs 33%² in general population.
- Sleep disorders are multifactorial: Known factors that affect sleep include: psychiatric disorders, medication^{3,4}.

Research question: Are the generally known effects of CLD on sleep deprivation in adults influenced by interactions between contextual elements (financial strain, sex/gender) and other factors?

OBJECTIVES

Among adults:

- Identify correlates of sleep deprivation in the general population.
- Explore association between CLD and sleep deprivation.
- Evaluate scientifically-justified two-way interactions that can influence the likelihood for sleep deprivation.

METHODS

- DATA SOURCE: Canadian Community Health Survey (CCHS) 2017-2018 Public Microdata File.
 - Overall: 113,290 people aged 12+ years participated.
 - Sleep data from: 4 provinces (PEI, QC, AB, BC) and 2 territories (YK, NVT).
 - Restricted to adults (>= 18 years)
- **OUTCOME:** Sleep Deprivation dichotomized: <7 hours, >= 7 hours
 - Derived from number of hours slept each night
- **PRIMARY EXPOSURE:** CLD (Yes/No)
 - Self-report of COPD or Asthma: long term (chronic) condition diagnosed by a health professional lasting/expected to last 6 months or more.
- Multiple logistic regression analysis⁵ using STATA 15.
- Sampling weights used to ensure final estimates were representative of Canadian population. To estimate standard errors, Taylor linearization was used⁶.
- Additive interaction measures evaluated using: Relative Excess Risk due to Interaction (RERI), Synergy Index (S), Attributable Proportion (AP)⁷.

Sleep Deprivation and Chronic Lung Disease in Canadian Adults

Gopinath Narasimhan^{1*}, Bisma Ikram¹, Sahana Ramamoorthy¹, Bonnie Janzen¹ and Punam Pahwa^{1,2} ¹Department of Community Health and Epidemiology, College of Medicine; ²Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan *Email: grn682@usask.ca

Study participant highlights

- Even split by sex (F: 51%); mostly from Quebec (23%); White ethnicity (72 %).
- About a third over 60 years.
- Majority (80%) with household income > low-income cutoff.

Synopsis of Results (Table 1)

- A number of variables were associated with increased odds for deprived sleep.
- After adjustment, those with CLD had 17% higher odds of being sleep-deprived compared to those who did not.

Notable Interactions (Tables 1 & 2) Female (sex) – Obese (BMI):

- Significant interaction [AOR] (95% CI): 0.77 (0.64-0.92)].
- Probability of sleep deprivation is significantly lower in women (sex) with a higher BMI than the referent (male-normal BMI; Figure 1).
- Showed consistent additive effect, with reduced odds [Table 2 -RERI: -0.32 (95% CI: -0.59,-[0.06)].

Occasional alcohol intake – low income households:

- Associated with lower odds (and probability; Figure 2) for deprived sleep [AOR (95% CI): 0.75 (0.60-0.93].
- Showed similar directionality as above [Table 2 - RERI: -0.36 (95%CI: -0.59, -0.13)].

Margins of Sex#Body Mass In	dex (BMI) with 95% CIs
Sex	2. Femal
Underweight or Normal Obese	Overweight
	Vargins of Sex#Body Mass In

Figure 1. Interaction plot for sex and BMI on the probability scale

RESULTS

[AOR

Locatio Territ

Femal Age gro 18-29 30-39

40-49 50-59

Note: BMI - Body Mass Index; COPD - Chronic Obstructive Pulmonary Disease; CPAG - Canadian Physical Activity Guidelines. Significant Odds Ratios at 0.05 level in red.

o 1 Multipla ragrassion analysis. Ac	liustad adds r	atios	
e 1. Multiple regression analysis. At	ijusted odds fa		
(95% CI) Sleep Deprivation with	associated fa	ctors	
Variable	Adjusted odds	p-value	
	ratio (95% CI)		
n of residence			
tories (Yukon , Nunavut)	s (Yukon , Nunavut) 1		
	1.22 (1.14-1.30)	0.000	
	1.04 (0.95-1.14)	0.326	
	0.85 (0.76-0.94)	0.000	
	1.07 (0.94-1.20)	0.280	
	1		
e	1.26 (0.67-2.36)	0.458	
up, in years			
- F ,	1		
	1.62 (1.02-2.55)	0.040	
	1.62 (1.02 2.55)	0.025	
	1.62 (1.02-2.57)	0.042	
	1.02(1.02-2.57) 1.27(0.81-1.08)	0.042	
lass Index (RMI)	1.27 (0.01-1.90)	0.490	
avaight or normal	1		
veight of horman	1 17 (1 06 1 20)	0.003	
veight	1.17(1.00-1.50)	0.003	
on level	1.46 (1.50-1.06)	0.000	
econdary certificate, diploma or university	1		
dary school graduation no post-secondary education	1 12 (0 99-1 25)	0.060	
ary school graddadon, no post-secondary education	1.12 (0.99-1.29)	0.000	
han secondary school graduation	1.24 (1.15-1.34)	0.000	
ess			
	1		
	1.56 (1.47-1.65)	0.000	
old income			
10,000	1		
0.000	1.14 (0.92-1.42)	0.221	
y			
	1	0.005	
minority (Non-White)	1.63 (1.44-1.85)	0.003	
status			
d	1		
on-law	0.95 (0.70-1.28)		
ved/Divorced/Separated	1.14(0.97-1.34) 0.97(0.77-1.22)	0.113	
g status		0.000	
moker	1		
	1.27 (1.02-1.56)	0.030	
onal	0.94 (0.68-1.29)	0.697	
t drink in the last 12 months	1		
drinker 1.06 (0		0.494	
onal drinker	1.34 (1.13-1.57)	0.001	
activity - CPAGV guidelines	1		
recommended level	0.96 (0.88-1.05)	0.397	
• • • •		0.000	
Jung Disease (Asthma/COBD: CLD)	0.95 (0.87-1.03)	0.269	
Lung Disease (Asinma/COPD; CLD)	1		
•	1.17 (1.07-1.27)	0.000	
of co-existing chronic conditions (multimorbidity)*^	(
ronic disease	1		
more chronic disease	1.18 (1.10-1.27)	0.000	
<pre>sht interactions <\$40,000 - Occasional alcohol intake</pre>	0.75 (0.60-0.93)	0.008	
nale) x BMI (Obese)	0.77 (0.64-0.92)	0.005	

Table 2. Additive Interaction Measures for select twoway interactions

	Female sex-Obese BMI		Low Income-Occasional a	alcohol intake
e	Coefficient (95% CI)	p-value	Coefficient (95% CI)	p-value
	-0.36(-0.59,-0.13)	0.002	-0.32(-0.59,-0.06)	0.015
	-0.34(-0.55,-0.13)	0.002	-0.27(-0.49,-0.05)	0.074
C	0.14(-0.08,0.35)	0.218	0.38(0.06,0.69)	0.02

and alcohol intake on the probability scale

- are consistent with the literature¹.
- necessary to clarify such effects.

- inform prevention and policy efforts.

STRENGTHS AND LIMITATIONS

- inferences. This requires longitudinal data.
- of health/lifestyle behaviours.

. Klink M, Quan SF (1987). Prevalence of reported sleep disturbances in a general adult population and their relationship to obstructive airway diseases. *Chest.* 91:540–46. 2. J.-P. Chaput, S. L. Wong, and I. Michaud (2017). Duration and quality of sleep among Canadians aged 18 to 79. *Health Rep.* 28(9): 28–33. 3. McNicholas WT, Calverley P, Lee A and Edwards J (2004). Long-acting inhaled anticholinergic therapy improves sleeping oxygen saturation in COPD. Eur Respir J. 23(6):825-31. 4. McNicholas WT, Verbraecken J, and Marin JM (2013). Sleep Disorders in COPD: the forgotten dimension. Eur Resp Rev. 22: 365-75. 5. Hosmer DW and Lemeshow S (2004). Applied Logistic Regression. Wiley. 6. Woodruff, R. S. (1971). "A Simple Method for Approximating the Variance of a Complicated Estimate." J Am Stat Assoc. 66:411-14. 7. Andersson T, Alfredsson L, Kallberg H, Zdravkovic S, and Ahlbom A (2005). Calculating measures of biologic interaction. *Eur. J. Epidemiol.* 20: 575–79. 8. Pearson NJ, Johnson LL and Nahin RL (2006). Insomnia, trouble sleeping, and complementary and alternative medicine: Analysis of the 2002 national health interview survey data. Arch Intern Med. 166(16): 1775-82. 9. Kripke DF, Garfinkel L, Wingard, Klauber DL, Marler MR (2002). Mortality associated with sleep duration and insomnia. Arch Gen Psychiatry. 59:131-36. 10. Park S.-Y. et al. (2015). The Effects of Alcohol on Quality of Sleep. Korean J Fam Med., 36(6): 294–99. 11. Johnson EO et al (1998). Epidemiology of alcohol and medication as aids to sleep in early adulthood . Sleep. 21:178-86. 12. Stein MD and Friedmann PD (2005). Disturbed Sleep and its relationship to alcohol use. Subst Abus. 26(1): 1-13.

DISCUSSION

• Our prevalence estimates (46%) of sleep deprivation (Yes) – CLD (Yes)

• As shown in the results, those affected by CLD are more likely to be sleep-deprived (17% higher odds). Respiratory disturbances are common in the CLD afflicted and have been linked to deprived sleep⁴.

• We were surprised obesity impacted women differently from men, perhaps to deteriorate sleep quality but not sleep duration. Obesity is known to affect metabolism and sleep/wake cycles⁸ but was more strongly predictive of sleep deprivation in men than women. Sex/gender is intertwined with sleep in complex ways. Kripke et al (2002) showed that in women, very long or very short sleep duration was associated with high BMI ⁹. We acknowledge that a more detailed study is

• Moderate alcohol intake is known to be associated with inadequate sleep¹⁰. Alcohol use has been known to aid sleep onset and alleviate insomnia¹¹, which could provide some insight into the observed interaction. However, continued use has been linked to poor sleep quality¹². These observations underscore an intricate relationship between alcohol use and sleep consequences influenced by many factors.

CONCLUSIONS

• Sleep deprivation is a serious public health issue. There are many factors that can affect sleep. These factors need to be studied in more detail to

• Both sex/gender and socioeconomic considerations play an important role in determining patterns of sleep deprivation versus just looking at individual health-related characteristics in isolation.

• A large nationally representative population sample gave us sufficient statistical power to identify a number of correlates and two-way interactions associated with the CLD-sleep deprivation relationship.

• The cross-sectional design limits our ability to make causal/directional

• Social desirability/recall issues are likely linked to differential reporting

• Factors like shift work which can have a close association with sleep and lung health were not considered due to data non-availability.

REFERENCES