Trajectories of pneumonia in a population-based study

of Korean older adults

Min Young Kim¹, Yanzhao Cheng¹, Hyun Ja Lim^{1 2}

- Collaborative Biostatistics Program, School of Public Health, University of Saskatchewan, Saskatoon, Canada Т.
- Department of Community Health and Epidemiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada 2.

UNIVERSITY OF SASKATCHEWAN School of Public Health

USASK.CA/SPH

ABSTRACT	MATERIALS AND METHODS	MATERIALS AND METHODS Univariate / Multivariate logistic regression				
The study aimed to determine trajectories of geriatric	Method of Analysis	• Univariate logistic regression analysis (Low-flat group is the reference group)				
nnoumonia in South Korea using group based		Variable	Low-to-High (n=	·90, 7.0%)	High-to-Low (n	=59, 2.5%)
trajectory modeling. A total of 4007 individuals aged	Group-based trajectory modeling is an application of finite mixture modeling. While the analysis aims to find sub-		OR (95% CI)	p-value	OR (95% CI)	p-value
65 or older were included. Of 4007 individuals, 2286	group trajectories within a population, the estimated parameters are not derived from cluster analysis, but they	Gender				
(57%) were females, with a mean baseline age of	depend on maximum likelihood estimation. The maximization is performed using the quasi-Newton procedure.	Male Female	- 0.65 (0.43 <i>,</i> 0.99)	- 0.0422	- 0.63 (0.37 <i>,</i> 1.05)	- 0.0738
72.48 years (SD = 6 years). Three pneumonia		Age				
trajectories were identified across 10 years of follow-	If we assume there are J groups of trajectories from the population, the unconditional group-based trajectory	65-69		0 7020		-
up: "low-flat" ($n = 3858$; 90.5), "low-to-high" ($n = 90$;	modeling would be	70-74	0.93 (0.56, 1.56)	0.7936	1.41 (0.73, 2.72) 1.58 (0.76, 3.26)	0.3118
7.0%) and "high-to-low" (n - 59. 2.5%). Compared to		80+	0.86 (0.42, 1.76)	0.6843	1.78 (0.81, 3.91)	0.1507
the low flat group both low to high and high to low	$P(Y_i) = \sum \pi_j P^j(Y_i)$	# of				
aroun members were more likely to have chronic	$\overline{j=1}$	members				
group members were more likely to have chrome	where π_i ($0 < \pi_i < 1$), represents the probability of a randomly chosen population member belonging to group <i>i</i> .			-		-
respiratory disease when they first participated in the	The final model selection will be based on Bayesian Information Criteria (BIC) when selecting the groups and the	3	3.50 (1.55, 7.89)	0.1231	2.01 (0.78, 5.21) 2.19 (0.73, 6.58)	0.1510
study. Also, high-to-low pneumonia group members	shape $RIC = log(I)$ $0.5k log(N)$	4	1.89 (0.65, 5.49)	0.2437	2.52 (0.72, 8.76)	0.1471
were more likely to have disabilities compared to the	shape. DIC $-\log(L) - 0.5 \times \log(N)$.	Smoking	2.51 (0.92, 5.79)	0.0742	5.70 (1.28, 10.7)	
low-flat pneumonia group. Pneumonia is one of the top		No		_	-	-
leading causes of death worldwide, and geriatric	For comparing the trajectory shape and membership differences, chi-square test and ANOVA was used. To identify	Current Previous	1.78 (1.00, 3.14)	0.0494 0.0263	1.18 (0.51, 2.74)	0.6992
pneumonia shows different aspects from younger	relevant risk factors, univariate and multivariate logistic regression was used. All the statistical analysis was	Disability				
natients Therefore our findings can help to	completed using SAS 9.4(SAS Institute, Cary, NC), and $\alpha = 0.05$ was selected for the significant level.	No			-	-
understand and prepare for coristric preumonia		Yes	0.62 (0.30, 1.29)	0.1974	2.36 (1.32, 4.22)	0.0038
understand and prepare for genatic pheumonia.		Chronic respiratory				
	KESULIS	disease				
BACKGROUND & INTRODUTION	Group-based trajectory modeling	No Yes	- 2.41 (1.29, 4.48)	- 0.0057	- 3.19 (1.60, 6.38)	0.0010

Trajectory specifies evaluating one or more outcomes over age or time, and there are several statistical approaches for analyzing developmental trajectories. Group-based trajectory modeling (GBTM) is one of the methods of trajectory analysis. It is an application of finite mixture modeling which uses trajectory groups to find sub-group trajectories within a population. Group-based trajectory assumes that the population is composed of distinct groups, each with a different underlying trajectory, and each subject in the group is approximately following similar trajectories on an outcome over time. It can identify distinctive developmental paths in complex longitudinal data, which can be useful when handling non-monotonic trajectories.

	RES	SULT

Outcome

1. Low-to-High (90, 7.0%)

2. High-to-Low (59, 2.5%)

3. Low-flat (3858, 90.5%)

• Multivariate logistic regression analysis (Low-flat group is the reference group)

Variable	Low-to-High (n=90, 7.0%)		High-to-Low (n=59, 2.5%)		
	OR (95% CI)	p-value	OR (95% CI)	p-value	
Disability					
No			-	-	
Yes			2.34 (1.31, 4.19)	0.0042	

The leading causes of death can be categorized broadly into three topics: cardiovascular, respiratory, and neonatal conditions. Pneumonia is a well-known respiratory disease that affects the lungs in forms of

Trajectory group comparison of characteristics

acute respiratory infection. For pneumonia, age is	Variable	Low-to-High (n=90, 7.0%)	High-to-Low (n=59, 2.5%)	Low-flat (n=3858, 90.5%)	p-value
considered as a risk factor where people at most risk	Gender				
are adults aged ≥ 65 years, young children, and infants.	Male	48 (53.3)	32 (54.2)	1541 (42.5)	0.0260
As the population is aging, and geriatric pneumonia	Female	42 (46.7)	27 (45.8)	2217 (57.5)	
shows different aspects from younger patients, this	Age	72.24 (5.7)	74.15 (6.8)	72.46 (6.0)	0.092
tudy is focusing on geriatric pneumonia. In this study,	Age (Categorical)				
0 years of follow-up longitudinal study data was used	65-69	35 (38.9)	17 (28.8)	1477 (38.3)	0.784
a model the trajectories for geriatric pheumonia	70-74	26 (28.9)	19 (32.2)	1175 (30.5)	
o model the trajectories for genatic pheumoma.	75-79	19 (21.1)	13 (22.0)	717 (18.5)	
	80+	10 (11.1)	10 (17.0)	489 (12.7)	
	# of household members				
STUDY OBJECTIVES	1	8 (8.9)	5 (8.5)	677 (17.5)	0.018
	2	42 (46.7)	29 (49.2)	1953 (50.6)	
	3	23 (25.5)	9 (15.2)	556 (14.4)	
Objective 1: To develop trajectories with binary	4	6 (6.7)	5 (8.5)	269 (7.0)	
outcomes using group-based trajectory modeling for	5+	11 (12.2)	11 (18.6)	403 (10.5)	
geriatric pneumonia.	Smoking				
	Current	17 (18.9)	7 (14.6)	490 (13.7)	0.114
	Previous	31 (34.4)	15 (31.2)	930 (26.1)	
Objective 2: To compare the trajectory shape and	No	42 (46.7)	26 (54.2)	2148 (60.2)	
nembership differences in group-based trajectory	Disability				
nodel.	No	82 (91.1)	43 (72.9)	3332 (86.4)	0.004
	Yes	8 (8.9)	16 (27.1)	526 (13.6)	
Objective 3: To identify relevant risk factors that may	Chronic respiratory disease				
nfluence the trajectory groups.	No	78 (86.7)	49 (83.1)	3626 (94.0)	<.000
\mathbf{J}	Yes	12 (13.3)	10 (16.9)	232 (6.0)	

Chronic respiratory disease				
No	-	-	-	-
Yes	2.41 (1.29, 4.48)	0.0057	3.17 (1.58, 6.34)	0.0012

CONCLUSION

- From the group-based trajectory modeling, three geriatric pneumonia trajectories were identified with: "low-flat" (90.5%), "low-to-high" (7.0%), and "high-to-low" (2.5%).
- Based on the overall chi-square test, gender number of household members (p=0.0260), (p=0.0187), disability (p=0.0046), and chronic respiratory disease (p<0.0001) were significantly different among the groups.
- Significant predictors for the "Low-to-High" pneumonia trajectory group are gender, number of household members, smoking status, having chronic respiratory disease. For "High-to-Low" group, the predictors are having disability, having chronic respiratory disease.

• In multivariate logistic regression analysis, the members from "Low-to-High" group were more likely to have chronic respiratory disease (OR=2.41, p=0.0057), and "High-to-Low" group members were more likely to have disability (OR=2.34, p=0.0042) and have chronic respiratory disease (OR=3.17, p=0.0012).

REFERENCES

[1] Nagin DS. (2005). Group-Based Modeling of Development. Cambridge: Harvard University Press. [2] Lim, H. J., Cheng, Y., Kabir, R., et al(2020). Trajectories of depression and their predictors in a population-based study of Korean older adults. The International Journal of Aging and Human Development, 0091415020944405.